
J .  Fluid Mech. (1967), uol. 27, part 3, pp. 595-608 

Printed in Great Britain 

595 

The use of schlieren and shadowgraph techniques in the 
study of flow patterns in density stratified liquids 

By D. E. MOWBRAY 
Department of the Mechanics of Fluids, University of Manchestert 

(Received 14 April 1966) 

Various methods of establishing fluid media stably stratified in either tempera- 
ture or the concentration of a foreign constituent are compared. A method used 
to construct a salt solution with precisely predetermined stratification is des- 
cribed. The Euler-Lagrange equations are solved exactly for a medium whose 
refractive index varies linearly in one dimension; the soIution shows that a 
schlieren system may be used. For media with non-linear one-dimensional varia- 
tion of refractive index, a modified shadowgraph technique may be employed. 
A device for the quantitative evaluation of a one-dimensional stratification is 
outlined and an example of its use is given. 

1. Introduction 
Characteristic diffusion times which govern the working life of an undisturbed 

stratified medium produced by (1) the mixing of a foreign gas in a gaseous 
medium, ( 3 )  the differential heating of layers of a gas or a liquid, and (3) the dis- 
solving of a solute in a solvent, are compared. It is shown that the characteristic 
rate of diffusion of a solute in a solvent is several orders of magnitude smaller than 
the others. A technique for producing a salt-water medium with a given density 
stratification controlled to fine limits is described in 9 2. 

The path of light rays through a medium whose refractive index varies only 
in one direction is analysed in $ 3  and an exact solution of the Euler-Lagrange 
equations is obtained. It is shown that for a linear variation of refractive index 
the path of a light ray is precisely a catenary, and that an incident parallel light 
beam passing through a glass walled tank containing such a medium emerges 
parallel so that a schlieren system may be used. This technique has been employed 
to  observe wave motions reported in Mowbray & Rarity (1967). 

For a non-linear variation of refractive index, a shadowgraph technique may 
be used; the shadowgraph image must be interpreted using the distorted image 
of a fine wire placed in the incident light beam. The distortion of the wire is 
measured directly and the data obtained used in a numerical solution of the 
Euler-Lagrange equations. The refractive index distribution is evaluated more 
easily and with greater accuracy than is possible with methods depending on 
light intensity measurements. An example of the technique is given for the 
determination of the refractive index distribution at  the diffuse interface of two 
salt solution layers. 

t Present address : Royal Aircraft Establishment, Bedford, England. 
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2. The production of density stratification 
The principal requirements of a density-stratified fluid system for experi- 

mental flow investigations are that it should be reasonably easy to produce and 
that the stratification should be sufficiently long lived. For large systems the 
cost of production may be an important factor. 

There are several ways of producing stratified fluids: by mixing gases of differ- 
ent densities, by differential heating of a layer of gas or liquid, or by varying the 
distribution of solute concentration in a solution. Thus a stably stratified stream 
can be produced continuously by steady release of carbon dioxide under air or 
by passing air through a grid of wires with differential electric heating placed in 
a wind tunnel. The coefficient of diffusivity, D, of carbon dioxide in air at 20 "C 
is 0.14 em2 see-1 giving a typical length scale (Dt)* for diffusion of order 0.4 ern 
after 1 see. The diffusivity of heat in air at 20 "C is 0.19 cm2 sec-l, giving a 
similar length scale. Density gradients produced in the laminar flow of air by 
either of these two methods will therefore decay rather quickly. 

Webster (1964) used differential heating of the air stream in a wind tunnel to 
study the effect of stable density stratification on the decay of turbulence pro- 
duced at a grid. In  this case the turbulence itself will modify the vertical density 
profile which will consequently vary with distance from the grid. Ellison & 
Turner (1959,1960) experimented on pipe and channel flows in which streams of 
brine were injected beneath a stream of water. A number of workers have studied 
multilayered flows in which layers of different density suffer little mixing and 
flows in water channels with differential heating. However, these techniques are 
not suitable for the production of deep layers with a uniform density gradient 
and will not be discussed further in the present paper which is concerned with the 
use of the last of the methods mentioned above. 

This method owes its usefulness to the very low diffusivities of many solutes 
in solution; salts in water have diffusivities D of order 10-5 em2 sec-l with cor- 
responding length scales for diffusion (Dt): of order 1 em after 1 day. Density 
profiles in stratified solutions will therefore decay very slowly. It is difficult to 
produce such stratifications in a steady water channel flow, but they can readily 
be produced in a static tank. 

The practical method of production of a specified density gradient in the tank 
depends upon the fact that the turbulence is strongly damped in a stable strati- 
fication. Thus thin layers of salt solution with successive increases in density can 
be run in one after another along the floor of the tank with relatively little mixing. 
Immediately after filling, the contents of the tank are layered with an approxi- 
mate step-like distribution of density, but molecular diffusion of salt progress- 
ively diminishes these irregularities in the profile. This method which, with 
certain variations, has been used by a number of investigators can produce 
required density profiles with high accuracy. 

The diffusion of a solute through a solvent satisfies Pick's law, which in one 
dimension is 

where C is the concentration, t the time and y the vertical space co-ordinate. The 

( a p t  - D azpy2)C = 0 
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coefficient of diffusion D is strictly a function of C, but for salt solution a t  room 
temperature this variation is small (figure 1) and the general features of the 
solution will be obtained assuming a constant value for D. The equation is then 
linear and of the same form as the one-dimensional heat conduction equation. 
Solutions of the equation must satisfy the condition that no salt crosses the 
boundaries. For the heat conduction equation this corresponds to the case of 
insulated boundaries. The solutions may be obtained using transform or Fourier 
series methods. 

1 *4 
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C(g in 100 g of solution) 

FIGURE 1. Diffusivity of aqueous salt solution as a function of the concentration 
of dissolved salt. 

Of special interest is the linear density distribution, as this enables disturbances 
within the tank to be observed with a schlieren system. A linear density profile 
may be produced by filling the tank with a number of equal layers where the 
concentration is increased by equal amounts from the uppermost layer to the 
lowest layer. In  the case of heat conduction this corresponds to many equal slabs 
of conducting material with equal steps in temperature from slab to slab and 
with insulated outer boundaries. 

If the concentration of the rth layer from the top is originally C,(r - l) /(m - l), 
where m is the total number of layers, then at a later time the concentration is 
found to be 

C n-l exp { - (n7r/L)2 Dt} cot (n77/2m) cos (nn-ry/L) , 1 4 m  

n(m - 1) n=, 

where y is the distance above the lower surface, L is the total depth and 
n =  1 , 3 , 5  ,..., co. 

Figures 2 and 3 show the development with time of the concentration profiles 
resulting from 10 and 20 layers. Only the upper half of the tank is shown as the 
profiles are symmetrical about the mid-level. The profiles are shown for five 
values of the dimensionless parameter T = (n/L)2 Dt where t is the time measured 
from the (hypothetical) instant of creation of the stepped density profile and L 
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FIGURE 2. Development of the concentration proBe from 10 layers. 
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FIGURE 3. Development of the concentration profile from 20 layers. 



The use of schlieren and shadowgraph techniques 599 

is the depth of the tank. In  both cases, all trace of the individual Iayers has dis- 
appeared by the time T = 0.01 and the solution shows how a constant concentra- 
tion gradient is produced in all of the tank except for regions close to the top (and 
bottom). As time increases, salt diffuses steadily through the region of constant 
gradient leaving the central region unchanged. However, the concentration of 
salt a t  the top is increased above the linear distribution and a t  the bottom the 
concentration is reduced as the concentration throughout the tank tends to a 
constant value. 

Two diffusion times are involved in the process of maturing a stably stratified 
tank; the time for the individual layers to disappear and the time for the diffusion 
waves from the upper and lower boundaries to cross the tank. The time scale for 
individual layers is L2/(m2n-?L)) and the time scale for the boundary effects to 
cross the tank is L2/(r2D).  For the rapid production of a linear density distribu- 
tion the number of layers should therefore be large, but the lifetime of the linear 
central region will depend entirely upon the depth of the tank. The density 
gradient is seen to be much more nearly linear for T = 0-001 for the 20-layer 
system than for 10 layers although the growth of the diffusion wave is in both 
cases very similar. Calculations for a 30-layer system showed that all traces of 
the individual steps had disappeared for T = 0.001. In  terms of normal time for 
a stratified tank of salt solution 2 ft. deep, the values of T = 0,001 and 0.01 
correspond to times of 10-4 and 104 h respectively. 

Observations indicate that linear profiles are established more rapidly than 
predicted theoretically. The differences are no doubt caused by small amounts of 
mixing of adjacent layers during the filling process. A small amount of mixing 
appears to smooth out the density discontinuities at each interface but leaves the 
central part of the layers unaffected. Since this configuration develops in the 
early stages of diffusion of a stepped system, further diffusion will produce the 
same linear distribution. The rate at  which the salt solution is introduced into the 
tank is a compromise between too much interfacial mixing and an excessively 
long filling time. If the solution is introduced too quickly, a turbulent mixing 
region may extend upwards through several layers and it is impossible to identify 
the resulting distribution with one created from a system of discrete layers. 

The linear profile may be extended towards the boundaries if half layers are 
used at the top and the bottom. If the linear part of the concentration profile is 
projected back, it is seen to cross the line C/Cl = 0 at the value of y/L equal to 
the thickness of one-half layer. It should be noted that the linear concentration 
gradient dC/dy has a value of C J L  when the half layers are used. When all the 
layers are of the same thickness, the value becomes mCJ(m- 1)L. 

3. Flow observation and visualization 
3.1. Properties of solutions 

Of the many solutes and solvents that could be used, common salt and water have 
proved to be adequate for the present experiments. Valuable properties for 
experimental work are the near-linear relation of both the refractive index and 
the density with salt concentration. Furthermore, the solution remains clear 
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allowing the use of optical techniques and direct observation. There is a slight 
increase in viscosity: at 20 "C the viscosity of saturated salt solution is 1.700 
centipoises compared with 1.005 centipoises for water. Although sugar provides 
a wider range of densities, it has the disadvantage that the viscosity increases 
rapidly with solute concentration. At 20 "C the density of a 60 % sugar solution 
is 1.286 g and the viscosity is 56.5 centipoises. The cheapness of salt as a 
solute is partially offset by the precautions necessary to counteract the corrosive 
nature of salt and salt solution. The metallic parts of the experimental apparatus 
have to be of stainless steel or brass or alternatively coated with a corrosion 
resistant finish such as 'Araldite' epoxy resin. 

Although many of the methods developed for the measurement of flow quanti- 
ties in wind tunnels cannot be successfully adapted for use in stratified liquids, 
optical methods lend themselves extremely well. To measure velocities, bands of 
coloured dye or neutrally buoyant particles may be observed directly or photo- 
graphically. Horizontal dye bands incorporated into the tank during the filling 
process are specially suited for the observation of internal waves. Alternate layers 
are coloured and although some of the colour does diffuse across the layer inter- 
faces, the bands of colour remain distinct and their motions are easily observed. 

Since changes in concentration are accompanied by small changes in refractive 
index, it is possible to use shadowgraph and schlieren methods usually associated 
with compressible gas flows. A disturbance in the stratified liquid will change 
the distribution of refractive index which in turn will cause a change in a shadow- 
graph or schlieren image. As the changes in refractive index are many times 
greater than those encountered in compressible gas flows, certain modifications 
must be made to the techniques. 

The refractive index of salt solution is a function of temperature, the concentra- 
tion of the dissolved salt and the wavelength of light. During experiments and 
beforehand, if diffusion has to take place, care is taken to avoid temperature 
changes of the solution in the tank. Two effects which have caused considerable 
disturbances are direct sunlight and the heat from the mercury vapour lamp used 
for the schlieren light source. In  both cases, suitable shielding has proved to be 
an adequate remedy. In  53.3 on the schlieren system, the variation of refractive 
index with the wavelength of light is shown to have little or no effect on the final 
schlieren image. It is therefore sufficient to assume that the final shadowgraph or 
schlieren image is a result of variations of concentration only. 

The refractive index, n, for light of wavelength 5893 r f  in salt solution of 
density p g em-3 at 18 "C is accurately represented by the linear relationship 

n = 1.3330 + 0.231 (p  - l), 

or alternatively n = 1.1020 + 0 . 2 3 1 ~ ,  

where (T = pip, oc is the specific gravity. The last expression for n should be com- 
pared with n = 1 + 0-000293p/pN.T~p. given for sodium light in air by Beams 
(1955). These expressions for the refractive index of air and salt solution show 
that the changes of refractive index are of the order 1000 times larger for salt 
solution than for air. Thus, even in the case of very weak stratification, the 
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sensitivity of a schlieren system is normally more than adequate. Because of the 
large changes in refractive index, the differential equations governing the 
passage of light rays through the tank must be integrated exactly. Approxima- 
tions made in the analysis of the optical records of compressible gas flows are no 
longer valid. 

3.3. Dejiexion of the light by an undisturbed strati$cation 

The path of a light ray passing through a density inhomogeneity is determined 
by Fermat’s law of stationary transit time. According to this law, the first varia- 
tion of the integral along the ray path of the local refractive index n(x ,  y, z )  must 

( 1 )  
vanish 6 J n ( x , y , z ) d s  = 0, 

where s is distance measured along the ray path. It can be shown (Beams 1955) 
that a ray path obeying ( 1 )  is described by the two differential equations for x 
and y as functions of z 

lan x’8n 
nax n az ’ 

y“ = {l+(x‘)~+(y’)2}{-----] 1 an y‘ an 
nay  n a z  ’ 

XN = { 1 + (x‘)2+ (y‘)2) { - - - --] 

where the prime denotes differentiation with respect to z. 
These are known as the Euler-Lagrange equations and describe the ray path . -  

in regions where it does not encounter a discontinuity surface of n(x ,  y, 2). At 
such a surface the ray is deflected by a finite amount determined by Snell’s law 
of refraction. 

It is assumed that the liquid is bounded by vertical glass walls, free from dis- 
tortion and inhomogeneities. The incident light is normal to the glass walls and 
this is chosen to be the z direction with x = 0 at the inside face of the first glass 
wall. Owing to the finite size of the light source the incident beam for both the 
shadowgraph and schlieren method consists of rays of light with slight inclina- 
tions to the z-axis; x: and y:. The subscript e refers to conditions a t  the inside face 
of the first glass wall. The y-axis is taken to be vertically upwards, the refractive 
index is then a decreasing function of y only, as variations of density (and there- 
fore of refractive index) can only exist in the vertical direction when the fluid is 
undisturbed. Equations (2) and (3) therefore reduce to 

X’I = 0 

and 
1 d n  y” = (1 + (x’)2+ (!/’I2}- - . 
n a y  

Upon integration (4) yields 

x = xe+x;z, (6) 

where xt = constant = x:. Relative to the x-axis the rays proceed without devia- 
tion from the point of entry x, with their angle of entry. 
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equation (5) is integrated to yield 

where 
If /3 = (1 + (ZA)~}~ then integration of (7)  yields 

1 -t (X;)~ -I- ( Y ' ) ~  = (an/n,)2, 

a = (1 + ( X p +  (yd)'y. 

( 7 )  

The negative square root is taken, since from (5) yff is negative and thus y' is 
always decreasing and will in general be negative. If the distribution of refractive 
index is known, (8) may be evaluated in either closed form or numerically to give 
the trace of the ray path in the plane x = x,+z;z. 

3.3. The schlieren system 

The schlieren system is a modified form of the twin concave mirror system norm- 
ally used to observe disturbances in compressible gas flows. Light from a mercury 
vapour lamp passes through a condenser lens and is then reflected as a paralIel 
beam by the first of the concave mirrors. After passing through the working 
section, the beam is brought to  a focus by the second mirror. At this point, part 
of the light forming the image of the light source is cut off by a knife edge or 
graded filter while the remainder enters the schlieren camera which is focused on 
the working section of the tank. Any inhomogeneities in the working section 
cause the rays to be deflected either onto or away from the knife edge and the 
resulting changes in illumination of the camera image may be recorded. If it  is 
intended to use the system to observe flows in stratified liquids, then the un- 
disturbed density distribution in the working section must deflect all the rays by 
the same angle so that the beam incident upon the second mirror is composed of 
parallel rays. In  practice, this requirement is fulfilled by a linear distribution of 
density. To intercept the beam, the second mirror is lowered and tilted and the 
knife edge and schlieren camera tilted to accept the beam. Disturbances within 
the working section cause perturbations of the light rays from this original con- 
figuration. The resultant changes in the intensity of illumination of the schlieren 
image correspond to regions of changed refractive index gradient and an inter- 
pretation of the image is obtained in the same way as for compressible gas flows. 

If the working section contains a stable linear density distribution then the 
variation of refractive index may be expressed as 

'n = no - a ( y  - yo17 (9) 

where u is a positive constant and no the known value of the refractive index at 
Y = Yo. 

With the change of variables Z = uaz/n, and N = na/pne, equation ( 8 )  reduces 
to 

Hence 
giving 
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where the root rejected does not satisfy (8). In  terms of the original variables, (10) 
yields 

where 
The inclination of the ray is 

ye - y = (n,/a) {cosh (aazln,) - 1 + y sinh (awl%,)}, 

y = ( 1  - (P/a)”. 

yf  = - a{sinh (aazln,) + y cosh (aaz/Ne)}. 

(11) 

(12) 

Generally, (11) and (12) may be simplified without any measurable loss of 
accuracy. In  the present experiments, the schlieren mirrors have a focal length 
of 180in. and the light source is about t i n .  across. This gives the maximum 
value of xi and y: as 1/720 of a radian. If the square of this quantity is neglected 
in comparison with unity then (1 1) and (12) yield 

ye - y = ne{cosh (azln,) - 1}/a 

and y’ = - sinh (axln,). 

Furthermore, since azln, is generally less than 0.05, it is a good approximation 
to write 

ye- y = az2/2ne (13) 

and yf  = -az/n,. (14) 

On leaving the liquid, the rays pass through the glass wall and into the air. 
At each interface the ray is deflected in accordance with Snell’s law of refraction. 
For a ray which is at small angle to the normal, its deflexion is increased in the 
ratio n:l where the refractive index of air is assumed to be unity and n is the 
refractive index of the fluid at  the point where the ray leaves the tank. Since the 
value of ye - y as given by (13) is small, this value of n will be very close to ne and 
from (1 4) the final deflexion of the rays will be 

y’= -aW, (15) 

where W is the width of the tank. 
This simple result shows that the deflexion of the rays is independent of the 

point of entry. The beam is deflected downwards by an angle which is directly 
proportional to the gradient of refractive index. The error involved as a result 
of the approximations used to obtain (15) has a maximum value of 10-4 radian 
and in most instances is considerably less. Since lo-* radian is considered to be 
the limit of sensitivity of this type of schlieren system, (15) may be regarded as 
being exact. 

If the second mirror is placed at distance E beyond the second glass wall of the 
tank, then the displacement of the beam at the mirror will be WaE. Each time 
the tank is filled with a linear density distribution, the second mirror is placed 
below the level of the first by this amount. It is then possible to reflect the whole 
of the beam illuminating the undisturbed tank towards the knife edge and 
camera. 

If the unfiltered light of a mercury vapour lamp is used for the light source, 
dispersion of the light rays causes the image of the light source at the knife edge 
to be distorted. The distortion is in the vertical direction only, since in the un- 
disturbed tank this is the only direction in which the refractive index varies. 
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However, if all of the light forming this distorted image enters the camera, the 
image of the working section formed at  the camera plate is of good quality. To 
produce the schlieren effect, part of the light forming the image of the light 
source must be cut off, either by a knife edge or a graded schlieren filter. Uniform 
darkening of the camera image is possible only if the knife edge is vertical. With 
a horizontal knife edge, the image becomes coloured, since the image of the light 
source is split into the coloura of the spectrum and one colour is cut of€ more than 
any other. A horizontal knife edge may be used if the light is filtered, but this 
reduces the intensity of illumination considerably. 

The schlieren method is restricted to the cases where the undisturbed density 
distribution is a linear function of depth. With other distributions, the emergent 
beam is not composed of parallel rays and a schlieren image cannot be formed. 
For cases where the stratification is a function of one space co-ordinate only, a 
modified shadowgraph method has been developed. 

3.4. Shadowgraph technique in strati$ed liquids 

A quantitative analysis of the usual shadowgraph record of a gas flow requires 
measurements to be made of light intensity. This is then followed by a numerical 
integration process to determine the distribution of refractive index that would 
give the measured distribution of intensities. A technique has been developed 
for stratified salt solution which eliminates the necessity for light intensity 
measurements and employs a simpler numerical process for the integration. 

Direct measurements of the ray deflexions have been made in the determina- 
tion of refractive index gradients by several investigators (Lamm, Svedberg & 
Peterson 1939). Usually these methods make assumptions which allow approxi- 
mations to be made to the Euler-Lagrange equations. It should be noted that 
the result of (14) may be obtained directly from (3) if it is assumed that the 
refractive index and its gradient do not change along the ray path and also that 
the deflexion remains small. Equation (3) reduces to 

and so 
y" = -a /n  

y r  = -axln. 

These approximations are usually valid only when the working section is quite 
narrow and the ray path in the liquid correspondingly short. In  the present 
experiments the refractive index along a ray path may vary from 1.333 to 1.373, 
as the salt concentration increases from zero to saturated. Substituting these 
values into (7) the maximum possible deflexion is found to  be 13-9". In  practice, 
deflexions in the region of 9" are frequently encountered in the region of a sharp 
increase in density. 

A light source and concave mirror are used to illuminate the working section 
with a parallel beam as with the schlieren method. A fine steel wire is stretched 
across the first glass wall of the working section at 45" to the horizontal. Varia- 
tions in refractive index within the working section produce a distorted image 
of the wire on an opaque screen placed at the second glass wall. 

Since there are no horizontal variations of density each ray is deflected in a 
vertical plane and its displacement is easily determined as the vertical distance 
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between the distorted and the undistorted images of the wire. The measurements 
are made from a photographic negative of the screen. Some convenient length is 
marked on the screen to enable the magnification of the negative to be calculated. 
The displacements are then used as data in a digital computer programme which 
determines the distribution of refractive index. 

3.5. Integration of the Euler-Lagrunge equations 

If x: and y: are zero then (7) gives 

The left-hand side of (16) is the displacement of the ray entering at y = ye and 
leaving the tank at y = yf. The values of yf- ye are the data obtained from the 
experiment and are known for all values of ye. 

An example of the method of solution for the determination of refractive index 
n(y) is given for the case of a diffuse interface between two layers of salt solution 
of different density. The distorted image of the wire is shown in figure 4. Regions 
above and below the interface have constant values of refractive index. The graph 
shows that the rays are not deflected in these regions. For the purposes of com- 
putation, the origin of the y-axis is taken to be the level at which the refractive 
index of the lower layer is first affected by diffusion. The distance across the 
interface is divided into equal layers and the displacement of the rays measured 
at each layer. In  this calculation the region is divided into 24 layers, this number 
being considered sufficient to accurately represent the main features of the 
distorted image curve. 

Briefly, the distribution of refractive index in the lowest interval is determined 
and from this the refractive index in the next interval is predicted. Equation (16) 
is then integrated for the ray which enters at the top of the interval and which is 
deflected downwards into the predicted distribution. The integral is repeated 
with slight variations to the distribution until the correct displacement is ob- 
tained. This trial and error process is repeated for each interval until the interface 
has been crossed. 

To start the computation, it is necessary to make some assumption about the 
initial variation of the refractive index. The variation is only small in the first 
interval and is probably closely represented by the quadratic form 

n = no - ky2, (17) 

where no is the constant value of the refractive index in the region below the 
interface and 7c is a small positive constant yet to be determined. 

Equations (8) and (I 7) yield 

where yel and yfl are the points a t  which the ray enters and leaves the tank 
respectively. 
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If ky2 < no, then (18) yields 

k = no{4n - sin-1 ( yf1/yel)}2/2 W2 (19) 

and Yfl  = Ye1 COS {wJ(2+0)>- (20) 
The second ray considered is that entering at ye2(ye2 = 2ye1). The variation in 

refractive index given by (17) is assumed to exist between y = 0 and y = ye2, in 

-4 I- 
FIGURE 4. The distorted image of a wire at an interface. 

which case (20) gives the point a t  which the ray emerges as 2yrl. If the displace- 
ment calculated in this way is not correct a change must be made to the value of 
the refractive index at  the point where the ray enters. An increase in the displace- 
ment of the ray is achieved by increasing the gradient of refractive index and 
vice versa. It is therefore known whether the refractive index at yez is larger or 
smaller than the correct value, but the magnitude of the discrepancy has still to 
be determined. The value of n at ye2 is adjusted slightly and a quadratic is formed 
which has the new value of n at  ye2, the value given by (17) at gel and n,,, a t  y = 0. 
This quadratic for n is substituted into the integral of (16) and the value of the 
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integral is determined. (The difficulties associated with the evaluation of the 
integral are dealt with later.) This procedure is repeated until the displacement 
is sufficiently close to the measured value. 

The value of the refractive index is now known at three points yez, yel and 
y = 0. The quadratic for n passing through these points is extrapolated to ges 
and the value of the integral determined. Should the result be incorrect, n ( 3 )  is 
adjusted and a cubic fitted to the distribution a t  the four points. Using cubics in 
this way, the values of n are extrapolated and corrected a t  each layer until the 
region has been crossed. 

An Adams-Bashforth fourth-order method is employed to determine the varia- 
tion in y as equal steps in x are taken. However a t  z = 0, y’ = 0 and after the first 
step has been taken, no change is obtained in the value of y and consequently in 
the value of n. The small changes that do occur over the first few steps must be 
determined using a higher derivative of y which is non-zero at z = 0. 

Upon differentiation, (7) yields 

y” = (n /n: )dn/dy .  
At x = 0, n = ne and thus 

yi=o = ( l / n e )  (dn/dy)z=o* 

The value of (dn/dy),=,, is determined from four known values of n; a t  the point 
where the ray enters (this is a predicted value), and the three values of y im- 
mediately below ye. It should be noted that 

which is zero at z = 0 since y: = 0. 

expansion 

where j is an integer and h the step length in the z-direction. Once these values of 
y are known the values of n and y‘ are calculated and the step by step integration 
may proceed. At each step the value of n is determined by Lagrangean interpola- 
tion of the known values of n at equally spaced intervals below ye. 

Figure 5 shows the distribution of refractive index obtained by the above 
technique from the curve of displacements shown in figure 4. For two equal layers 
of fresh water and salt solution of concentration Cl, the theoretical concentration 
profile is given by 

The first few values of y are therefore predicted accurately by the Taylor series 

y = ye+ &(jh)2y:=,, 

( - l)t(n+l)exp { - (nn-/L)2Dt} cos ( n n y / L )  (n = 1,3,5, . . .). 

However this profile will be slightly modified as a result of the mixing at the 
interface during the filling process. In  view of this it is impossible to check the 
computed result theoretically, but a test has been carried out by taking the 
refractive index profile of figure 5 and calculating the corresponding ray devia- 
tions. Points from this solution are marked with crosses in figure 4 and it is seen 
that the agreement is satisfactory. 
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A reduction in the amount of computation is possible if (7) is written as 

1.345 

1-335 

1.330 I I I I I I 

0 1 2 3 4 5 
Y (em) 

FIGURE 5 .  The computed distribution of refractive index. 

and integrated in equal steps of y using a Gauss integration formula. This is 
possible as the value of the refractive index is known at equally spaced values of 
y less than ye and interpolation for the refractive index and the calculation of 
dyldz and dnidy is no longer necessary. A value of n, is predicted and the integra- 
tion performed to determine z. The value of n, is adjusted until the value of z 
becomes close enough to W ,  the width of the tank. The integrand becomes infinite 
at  y = ye but this difficulty is overcome by using an integration formula for func- 
tions behaving like x-4 as x+ 0. Although this method is a saving in the case of 
a one-dimensional profile, work is progressing with the extension of the technique 
to two dimensions where it appears that the integration will have to be carried 
out using the method described in the above section. 
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